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Abstract

We discuss a combinatorial problem that arises in the optimization
of first-derivative code generated by exploiting the associativity of the
chain rule. Our objective is to minimize the arithmetic complexity of
such codes. A hierarchical approach is taken that ensures optimality
locally at the level of single scalar assignments. New optimal algo-
rithms are presented for three important special cases that represent
the building blocks of any derivative code.

1 Introduction

We consider computer programs that implement mathematical models for
simulating real-world processes in, for example, science, engineering, or eco-
nomics. Such programs represent vector functions F' : IR™ — IR™ that
determine the numerical behavior of a set of outputs y = F(x) depending
on the values of the inputs x. The Jacobian of F' is defined as the matrix of
the partial derivatives of the outputs with respect to the inputs, that is,

o F,(X) _ (ayj>j=1,...,m

O i=1,..,n

The optimal Jacobian accumulation problem [?] is to minimize the number
of fused multiply-add operations a + b - ¢ that are the main building blocks
of any code for computing F’, as shown in Section 2.

Tangent-linear and adjoint models are widely used to make the tran-
sition from the pure simulation to a possible optimization of objectives y
with respect to parameters x [?, 7, ?]. A semantical source transformation
technique known as automatic differentiation (AD) [?] can generate pro-
grams that implement the tangent-linear and adjoint models automatically
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from the original program. The tangent-linear model of F' is defined as
y = F'(x)-x, where x € IR" is a direction in the input space of F. Similarly,
the adjoint model of F is x = (F'(x)) -y with a vector of adjoints y € IR™
in the output space of F. A large part of the ongoing research in the field
of AD is aimed at improving the efficiency of these derivative codes. The
corresponding algorithms often require the solution of various discrete and
combinatorial problems, including coloring [?, 7, ?] and hard elimination [?]
problems.

In this paper we prove new results in the context of elimination tech-
niques used in the evaluation of tangent-linear and adjoint models. The
paper is structured as follows. In Section 2 we introduce the elimination
problem, and we present a summary of the results. In Section 3 we present
the technical details and we sketch the ideas of the corresponding proofs. In
Section 4 we draw conclusions about the impact of this work.

2 Problem Description and Summary of Results

We assume that the program that implements F' can be decomposed into a
sequence of scalar assignments of the results of all arithmetic operations and
calls of intrinsic functions to unique intermediate variables. Furthermore,
we assume that these elemental functions ¢;, j = 1,...,q, take at most two
arguments which applies to most arithmetic operations and intrinsic func-
tions of the high-level programming languages that are used to implement
numerical simulations. The code list v; = @;(v;)i<;, where ¢ < j if v; is an
argument of ¢;, can be linearized by computing local partial derivatives

9, (Vi) k<)
cji = X RIRR) aqu_ k=) (1)

of ¢; with respect to all v; with ¢ < j for j = 1,...,¢. This assumes that
all elemental functions are jointly continuously differentiable in some neigh-

borhood of the current argument. We set ¢;; = 0 for =1 —n,...,q. The
numbering of the code list variables is as follows: z; = v;_, for: =1,...,n,
zp =wv for k=1,...,p, and y; = v,y for j = 1,...,m. There are p inter-

mediate variables, and we set p +m = ¢. The corresponding index sets are
denoted by X ={1 —n,...,0}, Z={1,...,p},and Y ={p+1,...,q}.
For example, consider a function F : IR* — IR that is implemented as
the following scalar assignment:
ze L2

y=sin(e)" - ap? 2 (2)



The corresponding code list z; = v1 = sin(z1); 29 = vo = x:fz; 23 = U3 = i—i;
24 = Uy = vfl; Z5 = Vs = U2-U4; Y = Vg = v3-U5 is linearized by expressions for
the local partial derivatives of the elemental functions, for example, ¢; _ =
cos(z1) and ¢52 = vy.

A directed acyclic computational graph G = (V,E) is
induced by the code list. Weset V =X UZUY and £ =
{(4,7),i,7 € V : i < j}. No parallel edges sharing the same
source as well as the same target are allowed in G. This
graph is linearized by attaching the local partial derivatives
to the corresponding edges; that is, (7, j) € F is labeled with
c;,i- For the purpose of this paper it is sufficient to consider
G from a purely structural point of view. We refer to the
Figure 1: G  corresponding linearized computational graphs as c-graphs.

The c-graph for Equation (2) is shown in Figure 1.

The eztended Jacobian C of F' is defined as

C = (Cj,i)]:Lm’q

i=1-n,...,.p

For Equation (2) we get

€1,-2 0 0 0 0 0 0 0
C2 2 C2 -1 0 0 0 0 0 0
C— 0 C3,—-1 €30 0 0 0 0 0
a2 0 0 ey O 0O 0 O
0 0 0 C5,2 0 Cs5,4 0
6

0
0 0 0 0 0 c3 0 cop

The sparsity pattern of C' corresponds exactly to the adjacency matrix of G.
The nonzero entries in C are the local partial derivatives labeling the edges
in G. The extended Jacobian is the matrix representation of the c-graph.
For every result that holds on G there is an equivalent formulation for C in
terms of linear algebra. The results presented in this paper are derived by
using graph terminology.

With the tangent-linear system defined as

B )

the accumulation of F’ can be regarded as its solution for y in terms of x
as outlined in [?]. Similarly, the adjoint system
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can be solved for x in terms of y. Again, we have the choice of presenting

the results in this paper based on either the tangent-linear
6 or the adjoint system. W.l.o.g. we use the tangent-linear
system.

The solution of Equation (3) for y in terms of x is equiv-
alent to transforming G into a bipartite form such that the
labels on the remaining edges are exactly the nonzero entries
of the Jacobian [?]. Figure 2 shows the bipartite c-graph G/
that corresponds to the Jacobian of Equation (2). Vertezr and
Figure 2: G' edge elimination techniques have been developed to perform

this transformation at a near-optimal computational cost [?].
Analogous elimination techniques can be defined on the extended Jacobian
as shown in [?].

In G a vertex 7 € V is eliminated by connecting its
predecessors with its successors [?]. An edge (i, k) with

i < jand j <k is labeled with ¢ ; + ¢ ;- ¢j; if it existed I><
3

-2 -1®@ o

before the elimination of j. We say that absorption takes
place. Otherwise, (i, k) is generated as fill-in and labeled T % T %
with ¢ j - ¢j; The vertex j is removed from G together (a) (b)
with all incident edges. The procedure is illustrated in
Figure 3(b), which shows the structural modifications
resulting from the elimination of 3 in Figure 3(a). The
new edge labels are c41 = c4,1 +c4,3-€3,1, Ca42 = €43 €32,
c5,1 = €53 - 3,1, and c52 = c53 - c3 2. Vertex elimination in G is equivalent
to dyadic pivoting in C [?].
An edge (7, j) is front eliminated by connecting i with
all successors of j followed by removing (i,7) [?]. The

Figure 3: Vertex
Elimination

¢ 6 o ¢ corresponding structural modifications of the c-graph in

z © Bé Figure 3(a) are shown in Figure 4(a). The new edge

1 2 1 > labelsare c41 = c4,1+c43-¢31 and ¢51 = ¢53-¢c3,1. Front

(a) (b) elimination of edges in G is equivalent to row pivoting
in C [?].

Similarly, (i,7) € E is back eliminated by connecting
all predecessors of i with j [?]. The edge (i,7) itself is
removed from G. In Figure 4(b) the two in-edges of 4
are modified as c4,1 = c4,1 +c¢4,3 - ¢3,1 and c42 = ¢4.3 - c3.2. Back elimination
of edges in G is equivalent to column pivoting in C [?].

Edge elimination eventually leads to intermediate vertices in G becoming
isolated, that is, these vertices do not have any predecessors or successors
anymore. Isolated vertices are simply removed from G together with all

Figure 4: Edge
Elimination



incident edges.
The transformation of G into G’ using an elimination sequence o yields
the Jacobian accumulation code

0z,

O2kg (as in Equation (1)) if iy < ko
Ck}o,io - .
0 otherwise

Chyitiys1 = Chy iy T Chyojy " Gy, forv=0,...,M(c) -1

M (o) denotes the number of fused multiply-add (fma) operations performed.
This number is essentially equal to the number of multiplications performed,
and it represents the objective with respect to which the Jacobian accumu-
lation code is optimized. We cannot give a formal proof for the complexity
of solving the tangent-linear system by using a minimal number of fma’s
yet. However, we conjecture that this c-graph elimination (CGE) problem
is NP-complete. So far, no polynomial algorithm exists that solves the prob-
lem exactly in general. The closely related problem of finding an elimination
sequence that minimizes the fill-in for a pure vertex elimination strategy was
shown in [?] to be NP-complete. Various methods for solving the CGE prob-
lem have been proposed, including heuristics [?], dynamic programming [?],
and simulated annealing [?]. A generalization of the elimination techniques
to the dual c-graph is presented in [?].

The evaluation of the tangent-linear model y = F’ - x can be regarded
as the solution of the tangent-augmented tangent-linear system

_(x 0

_ (0 C) .
for y in terms of Z € IR. A new auxiliary
intermediate variable x € IR" is introduced
that corresponds to the original independent
variable x whose values now become entries of
the new extended Jacobian C. In the tangent-
augmented c-graph G = (V,E) a new inde-
pendent vertex is introduced for . New edges
connect it with the vertices that represent the
elements of x. These edges are labeled with
the values of the corresponding elements of x.

Figure 5: Augmentation  Figure 5(a) depicts the structure of this graph
for Equation (2).

)z'c =C- (5)
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The adjoint model x = (F')T - y can be evaluated by solving the adjoint-
augmented tangent-linear system
b'd
C 0 .
-(5 9)- (2 ©

for § € IR in terms of x. Again, a new auxiliary intermediate variable
gr € IR™ is introduced together with the new dependent variable g. In the
adjoint-augmented c-graph G = (V, E’) the edges connecting the elements of
y with § are labeled with the corresponding values of y. The structure of
this graph for Equation (2) is shown in Figure 5(b).

To find a good approximation for the solution of the CGE problem,
we choose a hierarchical approach [?] that ensures local optimality at the
level of single assignment statements y = F'(x), y € IR, while applying some
approximation methods globally. For the solution of the augmented tangent-
linear systems the question arises whether the optimal preaccumulation of
all local gradients followed by the propagation of tangents or adjoints is in
fact optimal. The answer is “no.”

In scalar assignments, such as Equation (2), any intermediate value that
is computed cannot be used more than once. In other words, all intermediate
vertices in the c-graph have exactly one successor. This single expression use
property is exploited in Section 3 to derive the main results of this paper.
Under the assumption that all elemental functions are at most binary, we
prove the optimality of the following three algorithms.

~
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Algorithm A : Optimal Gradients of Scalar Assignments The lo-
cal gradient of a scalar assignment is preaccumulated optimally as follows:
(a) Eliminate all intermediate vertices j with a single predecessor for j =
1,...,p. (b) Eliminate the remaining vertices in reverse order, that is, for
j=mp,..., 1L

The resulting bipartite graphs of all scalar assignments in the program
form a reduced c-graph of the entire function at a given point. Some ap-
proximation algorithm can be applied to find a near-optimal elimination
sequence that transforms this c-graph into a bipartite form.

An optimal elimination sequence for the c-graph of Equation (2) is
(1,4,5,3,2). Its cost adds up to eight fma’s. A pure forward or backward
vertex elimination sequence performs nine fma’s, respectively.

Algorithm B : Optimal Adjoints of Scalar Assignments Algorithm
A can also be used to solve the adjoint-augmented tangent-linear system



optimally for scalar assignments. Adjoints are propagated backward in the
c-graph according to

9y

%

Note that the local gradient of the scalar assignment is not computed ex-
plicitly. For example, an optimal elimination sequence for the adjoint-
augmented c-graph in Figure 5(b) is (1,4, 6,5, 3, 2).

X =

Algorithm C : Optimal Tangents of Scalar Assignments Directional
derivatives can be propagated forward based on scalar assignments as

.0y

Y= 01
The number of fma’s required locally is minimized by the following algo-
rithm: (a) Recursively, eliminate all intermediate vertices in G that have
both a single predecessor and a single successor. Repeat for as long as such
vertices exist in G. (b) Eliminate the remaining intermediate vertices for
j=1...,p.

Again, the algorithm does not compute the local gradient of the scalar

assignment. The optimal elimination sequence that is computed for the
tangent-augmented c-graph in Figure 5(a) is (0,1,4,-2,—1,2,3,5).

3 Elimination Algorithms

Following the introduction of some notation, we prove two lemmas that are
crucial for any further development.

For a given G we denote the cost of an optimal elimination sequence by
M (G). The graph resulting from G = (V, E) after the insertion of some edge
(1,7), 4,7 € V, is denoted by G+ (7, j). G —j denotes G after the elimination
of a vertex j € V. Similarly, G — H denotes G after the elimination of a
set of vertices H C V. As before, the cost of an elimination sequence o is
denoted by M(o).

Lemma 1 Let G = (V, E) be a linearized computational graph.
1. M(G + (i,5)) > M(G) fori,j € V.
2. Forig X orjgY MG+ (i,7) =M(G) & Jo: M(o) = M(G)

and o generates (i,7) as fill-in.



Proof First, we show that the insertion of a new edge (i, ) can never de-
crease the optimal cost. Therefore, let o be an optimal elimination sequence
for G. Furthermore, let ¢’ be an elimination sequence for G + (4, j) such
that M(o') < M(c). Set ¢;; = 0 to make ¢’ an elimination sequence for G.
Its cost undercuts the cost of o, thereby contradicting the assumption that
o is optimal for G.

For the second part of the lemma we note that, obviously, inserting an
edge (7,7) with ¢ € X and j7 € Y does not increase the optimal cost.

“«< 7 : Let o be an elimination sequence for G that generates (7,j) as
fill-in. The application of o to G + (4,5) adds a single scalar addition to
the operations count. The length of the Jacobian code remains unchanged.
Hence, o is also an optimal elimination sequence for G + (i, ).

“ = 7 : Suppose that none of the optimal elimination sequences for G
generates (7,7) as fill-in. Let o be one of them. Furthermore, let o’ be
an optimal elimination sequence for G + (4, ) such that M(o') = M(0).
Obviously, o' must contain at least one statement that involves c;; as a
factor. Set ¢;; = 0in o’. The resulting elimination sequence is an elimination
sequence for G that undercuts the cost of o by at least one. This contradicts
the assumption that o is optimal for G. [J

For j € V we define Pj = {i:i < j} and §; = {k: j < k}. We use |S] to
denote the cardinality of a set S.

Lemma 2 Letj € V be such that |P;|-|S;| = 1. Then M(G) = M(G—j)+1.

Proof Let i < 7 < k in G, and let the cost of eliminating j be equal
to |P;| - |Sj| = 1. Consider any optimal elimination sequence o for G — j.
Obviously, neither (7, j) nor (4, k) can be generated as fill-edges by o because
j ¢ G — j. By Lemma 1 we must have M(G) > M(G — j). M(G —j) +1
is the lowest possible value satisfying this inequality. [J

We say that the elimination of vertices j with |P;| - |S;| = 1 preserves
optimality.

3.1 Optimal Gradients of Scalar Assignments

Proposition 1 Let G be a c-graph such thatVj € Z : |Pj| < 2 and |S;| = 1.
Let M, be the cost of an elimination sequence that solves the CGE problem
for G. Then M, = 2p— |H |, where the set H is defined recursively as follows:

I H={icG:|P| |8 =1};

2. if (H = @) then exit else G = G — H; goto 1.



Proof The recursive elimination of all vertices in H preserves optimality
by Lemma 2. It remains to be shown that none of the vertices left can be
eliminated at the cost of one fma. Eliminating them in reverse order as in
Algorithm A ensures their elimination at a cost of two fma’s, and the proof
of the proposition follows immediately.

Consider an arbitrary intermediate vertex j in G — H. It must have
exactly two predecessors. The elimination of either of its predecessors re-
sults in a decrease of the indegree of j only if this predecessor has a single
predecessor itself. This is cannot be the case in G — H. [ Moreover, the
elimination of some i € G with |P;| - |S;| = 1 can only lead to a decrease
of the indegree of its successor. Consequently, we can perform a forward
elimination of all vertices in H as in step 1 of Algorithm A.

3.2 Optimal Adjoints of Scalar Assignments

Proposition 2 Let G be a c-graph such thatVj € Z : |Pj| <2 and |S;| = 1.
Let M, be the cost of an elimination sequence that solves the CGE problem
for the adjoint-augmented c-graph G. Then M, = 2(p + 1) — |H|, where the
set H is defined for G as in Proposition 1.

The adjoint-augmented c-graph exhibits the single expression use property.
Hence, the proof of Proposition 2 follows immediately.

3.3 Optimal Statement-Level Tangents

In general, tangent-augmented tangent-linear systems do not have the single
expression use property.

Proposition 3 Let G be a c-graph such thatVj € Z : |Pj| <2 and |S;| = 1.
Let M, be the cost of an elimination sequence that solves the CGE problem
for the tangent-augmented c-graph G. Then

M, =|H[+ Y |Si|+|Z\H| , (7)
i€X\H

where the set H is defined for G as in Proposition 1.

Proof First we note that Equation (7) is equal to the cost yielded by
Algorithm C. The minimal possible cost at which any vertex in G can be
eliminated is one. Therefore, the number of intermediate vertices in G that
is equal to |Z| = | X| + | Z| represents a lower bound for the cost of solving



the tangent-augmented tangent-linear system. This value can actually be
achieved if |S;| = 1 for all 7 € X because then H = X U Z. Starting from
this situation, let us add some edge (i,7) to G. W.Lo.g., let € X.? For the
target j we can either have j € Y or j € Z such that |Pj| =1 in G.

By Lemma 1, inserting (7, j) does not change the opti-
mal cost only if (4,7) is generated as fill-in by an optimal
elimination sequence for G.

Let j € Y. In order to generate (i,7) as fill-in an edge
(k,7) with (7, k) € E needs to be back eliminated by some
optimal elimination sequence for G. However, any optimal
elimination sequence for G eliminates i before k. There-
fore, the optimal cost must be increased as a result of

(a) (b) inserting (4,7). Algorithm C yields the minimal increase

possible (an increase by one).
Figure 6: Proof Let j € Z such that |Pj| = 1 in G. The recursive
elimination of all vertices in H preserves optimality by
Lemma 2. G — H + (i, §) is depicted in Figure 6 (a). Obviously, M (G — H +
(i,7)) = 3, and, again, the optimal cost is increased by one. Algorithm C
yields the same cost.

Suppose that [ edges have been inserted and that Equation (7) holds for
the resulting graph. Insert (4,7) as the (I + 1)th edge such that, again and
w.lo.g., 1€ X.

If j € Y, then the recursive elimination of all vertices in H leads to the
graph shown in Figure 6 (b). An optimal elimination sequence for G — H
that creates (i,7) as fill-in does not exist. This observation is the result
of generalizing the argument lead for the first edge that was inserted. By
Lemma 1 the insertion of (i,7) must increase the optimal cost. Again, the
application of Algorithm C yields a minimal increase of one.

For j € Z such that |Pj| = 1,k € P; in G and k € G — H we find
by a similar argument that in an optimal elimination sequence i is always
eliminated before k. Consequently, no optimal elimination sequence for G
generates (4,7) as fill-in. The optimal cost must be increased, and this
increase becomes minimal when applying Algorithm C. OJ

3 Alternatively, 4 could be equal to the single vertex in X. It is easily seen, however,
that this situation is not relevant for the proof because the minimal number of fma’s is
still equal to | X| + |Z] in this case.



4 Conclusion

The efficiency of automatically generated derivative code plays an important
role in modern numerical computing. One important contributing factor is
the arithmetic complexity that is defined as the number of floating point
operations performed by the derivative code. A variety of combinatorial op-
timization problems arise in this context. Polynomial algorithms are known
for only few of them.

We presented three new algorithms for the optimal accumulation of
derivative information at the level of scalar assignments. These results are
being exploited as part of a hierarchical approach to the optimization of
derivative code generated by next generation software tools for automatic
differentiation. Their development is part of a collaborative research effort
between MIT., Rice University, and the University of Chicago/Argonne Na-
tional Laboratory that has been funded under NSF’s ITR program. We
expect the theoretical results of this paper to have a positive effect on the
quality of these tools.
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